Share Email Print

Proceedings Paper

Longitudinal mode selection in a dye Q-switched ruby laser: a comparison between theoretical and experimental results
Author(s): Thangavel M. Thevar; John Watson
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

This paper provides a mathematical analysis to calculate the number of longitudinal modes and their relative strength in a dye Q-switched ruby laser. The calculations were based on formulae developed to accurately predict the number of loop transmits that occur while the laser pulse builds up from noise levels. An experiment was carried out using a ruby laser set-up to confirm our theoretical predictions. The number of longitudinal modes present in the laser output was evaluated by recording holograms of a two meter long graduated panel using the same laser source. The end results closely matched our theoretical predictions. This proven mathematical analysis was then applied to our laser design to optimize the longitudinal mode selection property of the dye Q-switch in the laser. As a result, the developed ruby laser produced single longitudinal mode pulses at a probability of 98%.

Paper Details

Date Published: 30 September 1996
PDF: 10 pages
Proc. SPIE 2889, High-Power Lasers: Solid State, Gas, Excimer, and Other Advanced Lasers, (30 September 1996); doi: 10.1117/12.253246
Show Author Affiliations
Thangavel M. Thevar, Univ. of Aberdeen (United Kingdom)
John Watson, Univ. of Aberdeen (United Kingdom)

Published in SPIE Proceedings Vol. 2889:
High-Power Lasers: Solid State, Gas, Excimer, and Other Advanced Lasers
Sui-Sheng Mei; Keith A. Truesdell, Editor(s)

© SPIE. Terms of Use
Back to Top