Share Email Print
cover

Proceedings Paper

Fast spatial-resolved beam diagnostics for material processing by industrial CO2 lasers
Author(s): Dirk Martinen; Ingo Decker; Helmut Wohlfahrt
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Due to the increasing range of high-speed and high-accuracy applications in material processing, especially in laser beam welding and cutting, the temporal stability of the laser beam parameters becomes more and more important. In this paper a laser beam diagnostic device is presented, that allows the determination of the intensity-profiles of high- power CO2 lasers with high time-resolution. The detector of this device consists of two linear arrays of room- temperature HgCdTe-detectors, arranged perpendicularly to each other across the center of the beam. The data of the 70 detector elements is acquired simultaneously at rates up to 15 kS/sec for single shot events and several 100 kS/sec for repetitive laser pulses. Due to the use of a digital signal processor (DSP) and an especially adapted software, it is possible to analyze the fluctuations of the intensity distribution on-line. By help of a partially transmitting mirror in the beam delivery system, measurements can be performed during material processing. Therefore, the interaction of the laser beam source itself with the material processing due to beam reflection as well as influences of the industrial environment to the laser can be detected. The calculation of the local variance and mean values enables the dependence of the laser's short- and long-term stability to be investigated due to changes in the resonator alignment, the stability of the power supply, the gas composition etc., as well as to the influence of the processing. For the pulse-mode of a laser, its transient behavior like changes of the intensity distribution can be determined with high time-resolution. For the improvement of drilling processes, the calculation of further statistical functions by the DSP makes it possible to estimate the uniformity of the laser pulses on-line as well.

Paper Details

Date Published: 30 September 1996
PDF: 8 pages
Proc. SPIE 2888, Laser Processing of Materials and Industrial Applications, (30 September 1996); doi: 10.1117/12.253107
Show Author Affiliations
Dirk Martinen, Technische Univ. Braunschweig (Germany)
Ingo Decker, Technische Univ. Braunschweig (FRG) and Univ. of Essex (United Kingdom)
Helmut Wohlfahrt, Technische Univ. Braunschweig (Germany)


Published in SPIE Proceedings Vol. 2888:
Laser Processing of Materials and Industrial Applications
Shu-Sen Deng; S. C. Wang, Editor(s)

© SPIE. Terms of Use
Back to Top