Share Email Print

Proceedings Paper

Excitons in novel quantum materials: a Monte Carlo study
Author(s): En-Ge Wang
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The exact binding energies of excitons in novel type-II In1-xGaxAs/GaSb1-xAsy quantum well materials in the effective mass model are evaluated by diffusion quantum Monte Carlo simulations. The results support the experimental interpretation that a stable excitonic ground state can exist in spatially separated electron-hole systems. The electron(hole) correlation effects and quantum confinement are shown to enhance the binding of the excitons. The calculated results for various magnetic fields provide a guide for further experiments in accurate determination of the binding energies, which is important in the optoelectronic application of novel quantum well materials.

Paper Details

Date Published: 3 October 1996
PDF: 7 pages
Proc. SPIE 2897, Electro-Optic and Second Harmonic Generation Materials, Devices, and Applications, (3 October 1996); doi: 10.1117/12.252936
Show Author Affiliations
En-Ge Wang, Institute of Physics (China)

Published in SPIE Proceedings Vol. 2897:
Electro-Optic and Second Harmonic Generation Materials, Devices, and Applications
Manfred Eich; Bruce H. T. Chai; Minhua Jiang, Editor(s)

© SPIE. Terms of Use
Back to Top