Share Email Print
cover

Proceedings Paper • new

Modelling light propagation for fetal monitoring in utero
Author(s): Jacqueline Gunther; Baptiste Jayet; Ray Burke; Stefan Andersson-Engels
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

About one in three births in the United States is through Cesarean section. Current monitoring techniques are insufficient to determine hypoxia and acidosis in the fetus during labor. An FDA approved transvaginal fetal pulse oximeter has been used in clinical trials to show that the device can help decrease the rate of Cesarean section. However, this technique has not been adapted into normal hospital procedure. Past pre-clinical and clinical studies have shown the feasibility of transabdominal fetal pulse oximetry. To understand the fundamentals of transabominal fetal pulse oximetry, we examined a layer model with both Monte Carlo and NIRFAST simulations. The NIRFAST model was used to model concentric spheres to understand the effect on geometry. The simulations were used in order to determine how much optical power can be detected from the fetus with a light source at 850 nm. The signal decreased as the fetal depth increased and as source-detector distance increased. The results can be used to aid in the design of a transabdominal fetal pulse oximeter.

Paper Details

Date Published: 11 July 2019
PDF: 3 pages
Proc. SPIE 11074, Diffuse Optical Spectroscopy and Imaging VII, 110740R (11 July 2019); doi: 10.1117/12.2526758
Show Author Affiliations
Jacqueline Gunther, Tyndall National Institute (Ireland)
Baptiste Jayet, Tyndall National Institute (Ireland)
Ray Burke, Tyndall National Institute (Ireland)
Stefan Andersson-Engels, Tyndall National Institute (Ireland)
Univ. College Cork (Ireland)


Published in SPIE Proceedings Vol. 11074:
Diffuse Optical Spectroscopy and Imaging VII
Hamid Dehghani; Heidrun Wabnitz, Editor(s)

© SPIE. Terms of Use
Back to Top