Share Email Print
cover

Proceedings Paper • new

Two-stage iterative Procrustes match algorithm and its application for VQ-based verification
Author(s): Richeng Tan; Jing Li
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

In the past decades, Vector Quantization (VQ) model has been very popular across different pattern recognition areas, especially for feature-based tasks. However, the classification or regression performance of VQ-based systems always confronts the feature mismatch problem, which will heavily affect the performance of them. In this paper, we propose a two-stage iterative Procrustes algorithm (TIPM) to address the feature mismatch problem for VQ-based applications. At the first stage, the algorithm will remove mismatched feature vector pairs for a pair of input feature sets. Then, the second stage will collect those correct matched feature pairs that were discarded during the first stage. To evaluate the effectiveness of the proposed TIPM algorithm, speaker verification is used as the case study in this paper. The experiments were conducted on the TIMIT database and the results show that TIPM can improve VQ-based speaker verification performance clean condition and all noisy conditions.

Paper Details

Date Published: 15 March 2019
PDF: 7 pages
Proc. SPIE 11041, Eleventh International Conference on Machine Vision (ICMV 2018), 110411F (15 March 2019); doi: 10.1117/12.2523293
Show Author Affiliations
Richeng Tan, Baidu, Inc. (China)
Jing Li, GAC Automotive Engineering Institute (China)


Published in SPIE Proceedings Vol. 11041:
Eleventh International Conference on Machine Vision (ICMV 2018)
Antanas Verikas; Dmitry P. Nikolaev; Petia Radeva; Jianhong Zhou, Editor(s)

© SPIE. Terms of Use
Back to Top