Share Email Print
cover

Proceedings Paper • new

Detection of sea surface obstacle based on super-pixel probabilistic graphical model and sea-sky-line
Author(s): Liting Zhu; Jingyi Liu; Jinbo Chen
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

With the development of marine resources, the USV (Unmanned Surface Vehicle) was widely used as a platform for autonomous navigation in the marine environment. In order to ensure the safe navigation of USV, this paper proposed a sea surface obstacle detection method based on probability graphical model and sea-sky-line. Our method utilized the SLIC algorithm to segment the sea surface image for image pre-processing. Then, we proposed the superpixel-based probability graphical model to segment the image, and the sea surface image would be divided into three main semantic regions and an obstacle region. Finally, we proposed a sea-sky-line detection algorithm. Based on this, obstacles within the sea-sky-line would be detected. The accuracy of this method has reached 82.1%, and the recall rate has reached 92.0%. The method can effectively avoid the interference of sea surface reflection and objects such as clouds in the sky, and has a good effect on the detection of obstacles.

Paper Details

Date Published: 15 March 2019
PDF: 10 pages
Proc. SPIE 11041, Eleventh International Conference on Machine Vision (ICMV 2018), 110411X (15 March 2019); doi: 10.1117/12.2522672
Show Author Affiliations
Liting Zhu, Shanghai Univ. (China)
Jingyi Liu, Shanghai Univ. (China)
Jinbo Chen, Shanghai Univ. (China)


Published in SPIE Proceedings Vol. 11041:
Eleventh International Conference on Machine Vision (ICMV 2018)
Antanas Verikas; Dmitry P. Nikolaev; Petia Radeva; Jianhong Zhou, Editor(s)

© SPIE. Terms of Use
Back to Top