Share Email Print
cover

Proceedings Paper • new

A simple OAM mode generator based on SOI strip waveguides
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A simple optical orbital angular momentum (OAM) mode generator based on silicon-on-insulator (SOI) strip waveguides is proposed, which is consisted of a coupled waveguide and a trench waveguide. The fundamental mode TE00 is coupled to the second-order mode via an asymmetric directional coupler. Single-trench waveguide can support two orthogonal LP-like modes whose optical axes are rotated by around 45° with respect to the horizontal and vertical directions. We simulate and analyze the mode properties and propagation effects of OAM modes with charge numbers of 1or -1 by FDTD. When the phase difference between two LP-like eigenmodes is π/2,the second-order mode is further converted to the OAM mode over a wide wavelength range from 1.43μm to 1.58μm.The simulation results indicate that the loss can achieve approximately 0.16 dB. The proposed device is very compact with footprint of <47μm×2μm and the mode conversion efficiency is over 97%. Thus, such structure of OAM mode generator is a promising candidate for applying in OAM multiplexing system and other fields.

Paper Details

Date Published: 14 February 2019
PDF: 6 pages
Proc. SPIE 11048, 17th International Conference on Optical Communications and Networks (ICOCN2018), 1104803 (14 February 2019); doi: 10.1117/12.2518281
Show Author Affiliations
Ling-Fei Zhang, Nanjing Univ. of Posts and Telecommunications (China)
He-Ming Chen, Nanjing Univ. of Posts and Telecommunications (China)
Xiu-Li Bai, Nanjing Univ. of Posts and Telecommunications (China)
Yu-Yang Zhuang, Nanjing Univ. of Posts and Telecommunications (China)


Published in SPIE Proceedings Vol. 11048:
17th International Conference on Optical Communications and Networks (ICOCN2018)
Zhaohui Li, Editor(s)

© SPIE. Terms of Use
Back to Top