Share Email Print
cover

Proceedings Paper • new

Efficient photon collection from single solid-state quantum emitters for quantum technology (Conference Presentation)
Author(s): Oliver Benson; Florian Böhm; Alexander Dohms; Niko Nikolay; Bernd Sontheimer; Hamza Abudayyeh; Boaz Lubotzky; Ronen Rapaport
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Optical quantum technology needs efficient sources for non-classical light. Solid-state emitters provide excellent mode purity, high brightness, and often also stable operation up to room temperature. At the same time the spin of individual impurities can be entangled with emitted photons. Nano-photonic structures can dramatically enhance the photon emission efficiency and thus the yield of quantum information processing tasks involving photons. One example is a node of a quantum repeater network. In this presentation we address the issue of enhanced photon collection from optically active defects in the solid-state such as diamond [1] or two-dimensional material [2]. We briefly introduce the emitters and then describe recent experiments where we couple them to dielectric/plasmonic antennas [3] and to SiO2/Si light collecting structures [4]. References [1] “Fiber-Coupled Diamond Micro-Waveguides toward an Efficient Quantum Interface for Spin Defect Centers”, M. Fujiwara, O. Neitzke, T. Schröder, A. W. Schell, J. Wolters, J. Zheng, S. Mouradian, M. Almoktar, S. Takeuchi, D. Englund, and O. Benson, ACS Omega 2, 7194-7202 (2017) [2] “Photodynamics of quantum emitters in hexagonal boron nitride revealed by low-temperature spectroscopy“, B. Sontheimer, M. Braun, N. Nikolay, N. Sadzak, I. Aharonovich, and Oliver Benson, Phys. Rev B 96, 121202(R) (2017). [3] “Accurate placement of single nano particles on opaque conductive structures“, N. Nikolay, N. Sadzak, A. Dohms, B. Lubotzky, H. Abudayyeh, R. Rapaport, and O. Benson, Appl. Phys. Lett, accepted (2018); arXiv:1807.10605 [4] “Fine-tuning of whispering gallery modes in on-chip silica microdisk resonators within a full spectral range“, R. Henze, C. Pyrlik, A. Thies, J.M. Ward, A. Wicht, O. Benson, Appl. Phys. Lett. 102, 041104 (2013).

Paper Details

Date Published: 8 March 2019
PDF
Proc. SPIE 10927, Photonic and Phononic Properties of Engineered Nanostructures IX, 1092714 (8 March 2019); doi: 10.1117/12.2516553
Show Author Affiliations
Oliver Benson, Humboldt-Univ. zu Berlin (Germany)
Florian Böhm, Humboldt-Univ. zu Berlin (Germany)
Alexander Dohms, Humboldt-Univ. zu Berlin (Germany)
Niko Nikolay, Humboldt-Univ. zu Berlin (Germany)
Bernd Sontheimer, Humboldt-Univ. zu Berlin (Germany)
Hamza Abudayyeh, The Hebrew Univ. of Jerusalem (Israel)
Boaz Lubotzky, The Hebrew Univ. of Jerusalem (Israel)
Ronen Rapaport, The Hebrew Univ. of Jerusalem (Israel)


Published in SPIE Proceedings Vol. 10927:
Photonic and Phononic Properties of Engineered Nanostructures IX
Ali Adibi; Shawn-Yu Lin; Axel Scherer, Editor(s)

© SPIE. Terms of Use
Back to Top