Share Email Print
cover

Proceedings Paper • new

Novel devices with photosensitive elements
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Liquid Crystal (LC) devices with photosensitive elements have incredible scope for creating unique photo-induced optical devices. The use of azobenzene based materials, which undergo a trans-cis isomerisation when irradiated with light of a specific wavelength, is firmly established in LC research. The trans conformation is an elongated rod-like shape, similar to LC mesogens, whilst the cis conformation is closer to a spherical (bent) shape, disrupting to the LC order. When these materials are doped into LC materials they are able to produce light induced responses, and therefore their application to photo-switchable optics and devices is undeniable. In this research paper the light induced order modification, rather than light induced reorientation, is utilized to produce an all-optical switchable laser protection device. Upon irradiation of an azo-doped LC system with a continuous, low power (0.5 mW), laser threat (λ=405 nm) the transcis photoisomerisation process is triggered. This results in the trans-cis conformal shape change, lowering of the LC order, and causing the system to switch from the LC nematic phase (transmitting between crossed polarisers) to the isotropic liquid phase (blocking/dark between crossed polarisers). The optical properties of the azo-doped LC materials have been characterized and the response time dependence on azo-dopant concentration, system temperature, and laser threat intensity is thoroughly investigated.

Paper Details

Date Published: 1 March 2019
PDF: 7 pages
Proc. SPIE 10941, Emerging Liquid Crystal Technologies XIV, 109410C (1 March 2019); doi: 10.1117/12.2515807
Show Author Affiliations
Ethan I. L. Jull, Univ. of Leeds (United Kingdom)
Helen F. Gleeson, Univ. of Leeds (United Kingdom)


Published in SPIE Proceedings Vol. 10941:
Emerging Liquid Crystal Technologies XIV
Liang-Chy Chien, Editor(s)

© SPIE. Terms of Use
Back to Top