Share Email Print
cover

Proceedings Paper • new

Hybrid modeling of quantum light emitting diodes: self-consistent coupling of drift-diffusion, Schrödinger-Poisson, and quantum master equations
Author(s): Markus Kantner
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The device-scale simulation of electrically driven solid state quantum light emitters, such as single-photon sources and nanolasers based on semiconductor quantum dots, requires a comprehensive modeling approach, that combines classical device physics with cavity quantum electrodynamics. In a previous work, we have self-consistently coupled the semi-classical drift-diffusion system with a Markovian quantum master equation in Lindblad form to describe (i) the spatially resolved current injection into a quantum dot embedded within a semiconductor device and (ii) the fully quantum mechanical light-matter interaction in the coupled quantum dot-photon system out of one box. In this paper, we extend our hybrid quantum-classical modeling approach by including a Schroedinger–Poisson problem to account for energy shifts of the quantum dot carriers in response to modifications of its macroscopic environment (e.g., quantum confined Stark effect due to the diode’s internal electric field and plasma screening). The approach is demonstrated by simulations of a single-photon emitting diode.

Paper Details

Date Published: 26 February 2019
PDF: 8 pages
Proc. SPIE 10912, Physics and Simulation of Optoelectronic Devices XXVII, 109120U (26 February 2019); doi: 10.1117/12.2515209
Show Author Affiliations
Markus Kantner, Weierstrass Institute for Applied Analysis and Stochastics (Germany)


Published in SPIE Proceedings Vol. 10912:
Physics and Simulation of Optoelectronic Devices XXVII
Bernd Witzigmann; Marek Osiński; Yasuhiko Arakawa, Editor(s)

© SPIE. Terms of Use
Back to Top