Share Email Print
cover

Proceedings Paper • new

Adaptive and compliant wingtip devices enabled by additive manufacturing and multistable structures
Author(s): Kimberly Gustafson; Luis Urrutia; Alexander Pankonien; Gregory Reich; Aimy Wissa
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Multifunctional lifting surfaces can expand the mission capabilities of aerial vehicles with a minimal number of components added to the vehicle. This paper presents a bio-inspired segmented wingtip concept for lift enhancement enabled by passive structural tailoring and active bistable truss mechanisms. The development of wingtips stems from studies of birds with desirable flight capabilities. The structural characteristics and maneuverable changes of a bird’s primary feathers during flight have identified three notable feather degrees of freedom: incidence angle, dihedral angle, and gap spacing. Wind tunnel experiments conducted on multi-wingtip systems have determined that different wingtip orientations and spacings are desired to enhance aerodynamic performance depending on the flight conditions. These results suggest that the wingtip degrees of freedom must be varied during flight to achieve optimal aerodynamic performance. This paper presents two structural concepts, one passive and one active, to achieve desired morphological wingtip parameters during flight. The passive structural concept exploits bend-twist coupling of additively manufactured composite laminate wingtips by using aerodynamic loads to induce passive shape adaptation of the composite wingtips to control the twist and dihedral angles. The active concept utilizes bistable truss mechanisms to vary the wingtip gap spacing. The force-displacement responses of bistable mechanisms and the bending and twist of bend-twist coupled composite wingtips are measured using a universal testing machine and Digital Image Correlation, respectively. Experimental results include the energy storage characterization of the bistable mechanisms as a function of material characteristics and the bend-twist coupling of the composite wingtips as a function of fabrication process and laminate properties.

Paper Details

Date Published: 13 March 2019
PDF: 12 pages
Proc. SPIE 10965, Bioinspiration, Biomimetics, and Bioreplication IX, 109650J (13 March 2019); doi: 10.1117/12.2514197
Show Author Affiliations
Kimberly Gustafson, Univ. of Illinois at Urbana-Champaign (United States)
Luis Urrutia, Univ. of Illinois at Urbana-Champaign (United States)
Alexander Pankonien, Air Force Research Lab. (United States)
Gregory Reich, Air Force Research Lab. (United States)
Aimy Wissa, Univ. of Illinois at Urbana-Champaign (United States)


Published in SPIE Proceedings Vol. 10965:
Bioinspiration, Biomimetics, and Bioreplication IX
Raúl J. Martín-Palma; Mato Knez; Akhlesh Lakhtakia, Editor(s)

© SPIE. Terms of Use
Back to Top