Share Email Print

Proceedings Paper • new

SpaceSkin: development of aerospace-grade electronic textile for simultaneous protection and high velocity impact characterization
Author(s): Juliana Cherston; Joseph A. Paradiso
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

This paper introduces the concept of an aerospace-grade electronic textile and summarizes design studies and early prototype development for on-fabric hypervelocity impact characterization. Whereas most damage detection technologies for aerospace systems rely on enhancements to the structure's inner shell, the outermost protective skin of a space habitat or a spacesuit - traditionally a woven fabric - is directly exposed to the relevant environment. Therefore, we propose weaving sensory fibers into traditional fibrous aerospace skins for direct measurement of local conditions, yielding a material that can simultaneously sense and protect. Specifically, this paper documents design considerations for multifunctional Beta cloth, in which piezoelectric yarn is directly woven into Teflon-coated fiberglass, the material used as the outermost skin of the International Space Station. A review of hypervelocity plasma generation then motivates a strawman design for on-textile plasma charge and RF emission sensing, which may be useful for further characterization of hypervelocity impactors. An aerospace-grade electronic textile is distinct from a traditional e-textile in that it must be validated not only for its sensing capabilities but also for its robustness to hazards presented in a space environment.

Paper Details

Date Published: 27 March 2019
PDF: 15 pages
Proc. SPIE 10970, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2019, 109700J (27 March 2019); doi: 10.1117/12.2513962
Show Author Affiliations
Juliana Cherston, MIT Media Lab. (United States)
Joseph A. Paradiso, MIT Media Lab. (United States)

Published in SPIE Proceedings Vol. 10970:
Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2019
Jerome P. Lynch; Haiying Huang; Hoon Sohn; Kon-Well Wang, Editor(s)

© SPIE. Terms of Use
Back to Top