Share Email Print
cover

Proceedings Paper • new

Comparison of CMOS and amorphous silicon detectors: determining the correct selection criteria, to optimize system performance for typical imaging tasks
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Complementary metal-oxide-semiconductors (CMOS) flat panel detectors (FPD) have steadily gained acceptance into medical imaging applications1-15. Selecting the proper detector technology for the imaging task requires optimization to balance the cost and the image quality. To facilitate this, fundamental detector performance of CMOS and a-Si panels were evaluated using the following quantitative imaging metrics: X-ray sensitivity, Noise Equivalent Dose (NED,) Noise Power Spectrum (NPS), Modulation Transfer Function (MTF), and Detective Quantum Efficiency (DQE). Imaging task measurements involved high-contrast and low-contrast resolution assessment. Varex FPDs evaluated for this study included: CMOS 3131 (150 μm pixel), a-Si 3030X (194 μm pixel), a-Si XRpad2 3025 (100 μm) and CMOS 2020 (100 μm pixel). Performance comparisons were organized by pixel size: large pixels, 150 μm CMOS and 194 μm a-Si, and small pixels, 100 μm in a-Si and CMOS technology. The results showed high dose DQE of the a-Si 3030X was about 10% higher than the CMOS 3131 between 0 - 1.8 cycles/mm, while beyond 1.8 cycles/mm, the CMOS performed better. The 3030X low dose DQE was higher than the 3131 between 0-1.3 cycles/mm, while the CMOS performance was higher beyond 1.3 cycles/mm. The high dose DQE of 100 μm a-Si was higher than the 100 μm CMOS for all frequencies. However, the low dose DQE of 100 μm CMOS was higher beyond 0.6 cycles/mm, while the 100 μm a-Si pixel had higher DQE only between 0 – 0.6 cycles/mm. Large pixel image quality (IQ) assessment favored a-Si pixel with 7% higher Contrast-to-Noise-Ratio (CNR) results for both high and low contrast-detail at 500 nGy. Small pixel CNR favored CMOS with ~38% better high contrast-detail and 12% greater low contrast-detail at ~500 nGy. Through these measurements that combine imaging metrics and image quality, we demonstrated a practical method for selecting the appropriate detector technology based on the requirements of the imaging applications.

Paper Details

Date Published: 3 April 2019
PDF: 12 pages
Proc. SPIE 10948, Medical Imaging 2019: Physics of Medical Imaging, 109480F (3 April 2019); doi: 10.1117/12.2513500
Show Author Affiliations
Isaias D. Job, Varex Imaging Corp. (United States)
Arundhuti Ganguly, Varex Imaging Corp. (United States)
Don Vernekohl, Varex Imaging Corp. (United States)
Richard Weisfield, Varex Imaging Corp. (United States)
Elena Muñoz, Varex Imaging Corp. (United States)
Jin Zhang, Varex Imaging Corp. (United States)
Carlo Tognina, Varex Imaging Corp. (United States)
Rick Colbeth, Varex Imaging Corp. (United States)


Published in SPIE Proceedings Vol. 10948:
Medical Imaging 2019: Physics of Medical Imaging
Taly Gilat Schmidt; Guang-Hong Chen; Hilde Bosmans, Editor(s)

© SPIE. Terms of Use
Back to Top