Share Email Print
cover

Proceedings Paper • new

A comparison of open source libraries ready for 3D reconstruction of wounds
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Quantitative assessment is essential to ensure correct diagnosis and effective treatment of chronic wounds. So far, devices with depth cameras and infrared sensors have been used for the computer-aided diagnosis of cutaneous wounds. However, these devices have limited accessibility and usage. On the other hand, smartphones are commonly available, and threedimensional (3D) reconstruction using smartphones can be an important tool for wound assessment. In this paper, we analyze various open source libraries for smartphone-based 3D reconstruction of wounds. For this, point clouds are obtained from cutaneous wound regions using Google ARCore and Structure from Motion (SfM) libraries. These point clouds are subjected to de-noising filters to remove outliers and to improve the density of the point cloud. Subsequently, surface reconstruction is performed on the point cloud to generate a 3D model. Six different mesh-reconstruction algorithms namely Delaunay triangulation, convex hull, point crust, Poisson surface reconstruction, alpha complex, and marching cubes are considered. The performances are evaluated using the quality metrics such as complexity, the density of point clouds, the accuracy of depth information and the efficacy of the reconstruction algorithm. The result shows that the point clouds are able to perform 3D reconstruction of wounds using open source libraries. It is found that the point clouds obtained from SfM have higher density and accuracy as compared to ARCore. Comparatively, the Poisson surface reconstruction is found to be the best algorithm for effective 3D reconstruction from the point clouds. However, research is still required on the techniques to enhance the quality of point clouds obtained through the smartphones and to reduce the computational cost associated with point cloud based 3D-reconstruction.

Paper Details

Date Published: 15 March 2019
PDF: 8 pages
Proc. SPIE 10954, Medical Imaging 2019: Imaging Informatics for Healthcare, Research, and Applications, 109540A (15 March 2019); doi: 10.1117/12.2513411
Show Author Affiliations
Syamantak Kumar, Indian Institute of Technology Bombay (India)
Dhruv Jaglan, Indian Institute of Technology Bombay (India)
Nagarajan Ganapathy, Indian Institute of Technology Madras (India)
Technische Univ. Braunschweig (Germany)
Thomas M. Deserno, Technische Univ. Braunschweig (Germany)


Published in SPIE Proceedings Vol. 10954:
Medical Imaging 2019: Imaging Informatics for Healthcare, Research, and Applications
Po-Hao Chen; Peter R. Bak, Editor(s)

© SPIE. Terms of Use
Back to Top