Share Email Print
cover

Proceedings Paper • new

Deep learning based approach for fully automated detection and segmentation of hard exudate from retinal images
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Diabetic retinopathy (DR), which is a major cause of blindness in the world is characterized by hard exudate lesions in the eyes as these lesions are one of the most prevalent and earliest symptoms of DR. In this paper, a fully automated method for hard exudate delineation is described that could assist ophthalmologists for timely diagnosis of DR before disease progress to a level beyond treatment. We used a dataset consist of 107 images to develop a U-Net-based method for hard exudate detection and segmentation. This network consists of shrinking and expansive streams in which shrinking path has the same structure as conventional convolutional networks. In expansive path, obtained features are merged with those from shrinking path with the proper resolution to generate multi-scale features and accomplish distinction between hard exudate and normal tissue in retinal images. The training images were augmented artificially to increase the number of samples in the dataset and avoid overfitting issues. Experimental results showed that our proposed method reported sensitivity, specificity, accuracy, and Dice similarity coefficient of 96.15%, 80.77%, 88.46%, and 67.23 ± 13.60% on 52 test images, respectively.

Paper Details

Date Published: 15 March 2019
PDF: 6 pages
Proc. SPIE 10953, Medical Imaging 2019: Biomedical Applications in Molecular, Structural, and Functional Imaging, 1095308 (15 March 2019); doi: 10.1117/12.2513034
Show Author Affiliations
F. Zabihollahy, Carleton Univ. (Canada)
A. Lochbihler, Carleton Univ. (Canada)
E. Ukwatta, Univ. of Guelph (Canada)


Published in SPIE Proceedings Vol. 10953:
Medical Imaging 2019: Biomedical Applications in Molecular, Structural, and Functional Imaging
Barjor Gimi; Andrzej Krol, Editor(s)

© SPIE. Terms of Use
Back to Top