Share Email Print
cover

Proceedings Paper • new

Reducing overfitting of a deep learning breast mass detection algorithm in mammography using synthetic images
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We evaluated whether using synthetic mammograms for training data augmentation may reduce the effects of overfitting and increase the performance of a deep learning algorithm for breast mass detection. Synthetic mammograms were generated using a combination of an in-silico random breast generation algorithm and x-ray transport simulation. In-silico breast phantoms containing masses were modeled across the four BI-RADS breast density categories, and the masses were modeled with different sizes, shapes and margins. A Monte Carlo-based xray transport simulation code, MC-GPU, was used to project the 3D phantoms into realistic synthetic mammograms. A training data set of 2,000 mammograms with 2,522 masses were generated and used for augmenting a data set of real mammograms for training. The data set of real mammograms included all the masses in the Curated Breast Imaging Subset of Digital Database for Screening Mammography (CBIS-DDSM) and consisted of 1,112 mammograms (1,198 masses) for training, 120 mammograms (120 masses) for validation, and 361 mammograms (378 masses) for testing. We used Faster R-CNN for our deep learning network with pre-training from ImageNet using Resnet-101 architecture. We compared the detection performance when the network was trained using only the CBIS-DDSM training images, and when subsets of the training set were augmented with 250, 500, 1,000 and 2,000 synthetic mammograms. FROC analysis was performed to compare performances with and without the synthetic mammograms. Our study showed that enlarging the training data with synthetic mammograms shows promise in reducing the overfitting, and that the inclusion of the synthetic images for training increased the performance of the deep learning algorithm for mass detection on mammograms.

Paper Details

Date Published: 13 March 2019
PDF: 7 pages
Proc. SPIE 10950, Medical Imaging 2019: Computer-Aided Diagnosis, 1095004 (13 March 2019); doi: 10.1117/12.2512604
Show Author Affiliations
Kenny H. Cha, U.S. Food and Drug Administration (United States)
Nicholas Petrick, U.S. Food and Drug Administration (United States)
Aria Pezeshk, U.S. Food and Drug Administration (United States)
Christian G. Graff, U.S. Food and Drug Administration (United States)
Diksha Sharma, U.S. Food and Drug Administration (United States)
Andreu Badal, U.S. Food and Drug Administration (United States)
Aldo Badano, U.S. Food and Drug Administration (United States)
Berkman Sahiner, U.S. Food and Drug Administration (United States)


Published in SPIE Proceedings Vol. 10950:
Medical Imaging 2019: Computer-Aided Diagnosis
Kensaku Mori; Horst K. Hahn, Editor(s)

© SPIE. Terms of Use
Back to Top