Share Email Print
cover

Proceedings Paper • new

An automatic end-to-end pipeline for CT image-based EGFR mutation status classification
Author(s): Lin Tian; Rong Yuan
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The epidermal growth factor receptor (EGFR) mutation status play a key role in clinical decision support and prognosis for non-small-cell lung cancer (NSCLC). In this study, we present an automatic end-to-end pipeline to classify the EGFR mutation status according to the features extracted from medical images via deep learning. We tried to solve this problem with three steps: (I) locating tumor candidates via a 3D convolutional neural network (CNN), (II) extracting features via pre-trained lower convolutional layers (layers before the fully connected layers) of VGG16 network, (III) classifying EGFR mutation status according to the extracted features with a logistic regression model. In the experiments, the dataset contains 83 Chest CT series collecting from patients with non-small-cell lung cancer, half of whom are positive for a mutation in EGFR. The whole dataset was divided into two splits for training and testing with 66 CT series and 17 CT series respectively. Our pipeline achieves AUC of 0.725 (±0.009) when running a five-fold cross validation on training dataset and AUC of 0.75 on testing dataset, which validates the efficacy and generalizability of our approach and shows potential usage of non-invasive medical image analysis in detecting EGFR mutation status.

Paper Details

Date Published: 15 March 2019
PDF: 6 pages
Proc. SPIE 10949, Medical Imaging 2019: Image Processing, 109492Q (15 March 2019); doi: 10.1117/12.2512465
Show Author Affiliations
Lin Tian, Ruijia Technology, Inc. (China)
Rong Yuan, Peking Univ. Shenzhen Hospital (China)


Published in SPIE Proceedings Vol. 10949:
Medical Imaging 2019: Image Processing
Elsa D. Angelini; Bennett A. Landman, Editor(s)

© SPIE. Terms of Use
Back to Top