Share Email Print
cover

Proceedings Paper • new

Detecting mammographically-occult cancer in women with dense breasts using deep convolutional neural network and Radon cumulative distribution transform
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We previously introduced the Radon Cumulative Distribution Transform (RCDT) as a novel image transformation to highlight the subtle difference between left and right mammograms to detect mammographically-occult (MO) cancer from women with dense breasts and negative screening mammograms. This study developed deep convolutional neural networks (CNN) as classifiers for estimating the probability of having MO cancer. We acquired screening mammograms of 333 women (97 unilateral MO cancer) with dense breasts and at least two consecutive mammograms and used the immediate prior mammograms, which radiologists interpreted as negative. We divided our dataset into a training, a validation, and a test set with ratios of 0.72:0.08:0.2. We applied RCDT on the left and right mammograms of each view. We applied inverse radon transform to represent the resulting RCDT images in the image domain. We then fine-tuned a VGG16 network pretrained on ImageNet using the resulting images per each view. Using the same images, we also developed a traditional classifier using handcrafted features per each view. The CNNs achieved areas under the receiver operating characteristic (AUC) curve of 0.74 and 0.69 for CC view and MLO view, respectively. The traditional classifiers from handcrafted features achieved AUCs of 0.5 and 0.64 for CC view and MLO view, respectively. We averaged the scores from the top three classifiers and achieved an AUC of 0.81 on the test set. In conclusion, we showed that inverse radon transformed RCDT images hold information to detect MO cancer and deep CNNs could learn such information.

Paper Details

Date Published: 13 March 2019
PDF: 8 pages
Proc. SPIE 10950, Medical Imaging 2019: Computer-Aided Diagnosis, 1095003 (13 March 2019); doi: 10.1117/12.2512446
Show Author Affiliations
Juhun Lee, Univ. of Pittsburgh (United States)
Robert M. Nishikawa, Univ. of Pittsburgh (United States)


Published in SPIE Proceedings Vol. 10950:
Medical Imaging 2019: Computer-Aided Diagnosis
Kensaku Mori; Horst K. Hahn, Editor(s)

© SPIE. Terms of Use
Back to Top