Share Email Print

Proceedings Paper • new

Electrical properties of BeMgZnO/ZnO heterostructures with high-density two-dimensional electron gas
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Accumulation of non-equilibrium hot longitudinal optical (LO) phonons limits the electron drift velocity for electronic devices operating under high electric field. Ultrafast decay of hot phonons can take place via plasmon-LO phonon resonance, which leads to fast electron energy relaxation and hence high electron drift velocity and optimum operation of the devices. This need motivates us to create heterostructures with 2DEG density close to the plasmon-LO phonon resonance region. Through incorporating a few percent of Be into the BeMgZnO barrier to switch the strain sign in the barrier from compressive to tensile, we have achieved 2DEG densities over a wide range in Zn-polar BeMgZnO/ZnO heterostructures with moderate Mg content (below 30%) grown by molecular beam epitaxy. We have obtained electron mobility of 250 cm2/Vs at room temperature (293 K) and 1800 cm2/Vs at 13 K in Be0.02Mg0.26ZnO/ZnO heterostructures. Via capacitance-voltage (CV) spectroscopy, we have explored the depth profiles of the apparent carrier density of samples grown under different conditions. The correlations between electrical properties and MBE growth parameters of Zn-polar BeMgZnO/ZnO heterostructures are discussed.

Paper Details

Date Published: 1 March 2019
PDF: 10 pages
Proc. SPIE 10919, Oxide-based Materials and Devices X, 1091917 (1 March 2019); doi: 10.1117/12.2511644
Show Author Affiliations
K. Ding, Virginia Commonwealth Univ. (United States)
V. Avrutin, Virginia Commonwealth Univ. (United States)
N. Izyumskaya, Virginia Commonwealth Univ. (United States)
Ü. Özgür, Virginia Commonwealth Univ. (United States)
H. Morkoç, Virginia Commonwealth Univ. (United States)
E. Šermukšnis, Ctr. for Physical Sciences and Technology (Lithuania)
A. Matulionis, Ctr. for Physical Sciences and Technology (Lithuania)

Published in SPIE Proceedings Vol. 10919:
Oxide-based Materials and Devices X
David J. Rogers; David C. Look; Ferechteh H. Teherani, Editor(s)

© SPIE. Terms of Use
Back to Top