Share Email Print
cover

Proceedings Paper • new

Improving mask yield by implementing an advanced mask blank inspection system
Author(s): Gregg Inderhees; Bill Kalsbeck; Alexander Tan; Paul Chung; JiUk Hur; Eric Kwon; Min Choo; Wonil Cho; Chan-Uk Jeon; IlYong Jang; In-Yong Kang; JeongHun Seo; Suein Son
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

As the semiconductor industry advances to ever-smaller nodes with finer feature sizes and more complex mask designs, reticle quality and reticle defects continue to be a top mask yield risk. The primary reticle defect quality requirement is defined as “no reticle defects causing 10% or larger CD error on wafer”. Beginning at around the 7 nm Logic node, EUV lithography will start pilot production in several leading fabs. EUV masks stress reticle defectivity requirements for mask shops even more than optical masks due to the larger printing impact from a similar size defect on the mask, and the greater cost and longer cycle time for EUV masks. In a mask shop, generally there are three use cases for a blank inspection system, which are used to monitor and improve mask defectivity; 1) Inspecting process monitor masks, which are used to partition the mask process and identify defect excursions, 2) inspecting ‘witness’ blanks, which are used to measure and control defectivity in each process tool / chamber and 3) inspecting incoming mask blanks to ensure defect-free starting materials for advanced optical and EUV reticles. Traditionally, mask shops have been using bright field confocal technology to perform these tasks. However, due to more stringent defect requirements and the flexibility necessary to support these varied use cases, the industry requires a new approach to drive yield improvements in mask manufacturing. In this paper, we report on the introduction of a new system that provides superior sensitivity, with very high throughput and the flexibility to adapt to many different use cases in a production environment.

Paper Details

Date Published: 3 October 2018
PDF: 10 pages
Proc. SPIE 10810, Photomask Technology 2018, 1081017 (3 October 2018); doi: 10.1117/12.2511160
Show Author Affiliations
Gregg Inderhees, KLA-Tencor Corp. (United States)
Bill Kalsbeck, KLA-Tencor Corp. (United States)
Alexander Tan, KLA-Tencor Corp. (United States)
Paul Chung, KLA-Tencor Corp. (United States)
JiUk Hur, KLA-Tencor Corp. (United States)
Eric Kwon, KLA-Tencor Corp. (United States)
Min Choo, KLA-Tencor Corp. (United States)
Wonil Cho, KLA-Tencor Corp. (United States)
Chan-Uk Jeon, SAMSUNG Electronics Co., Ltd. (Korea, Republic of)
IlYong Jang, SAMSUNG Electronics Co., Ltd. (Korea, Republic of)
In-Yong Kang, SAMSUNG Electronics Co., Ltd. (Korea, Republic of)
JeongHun Seo, SAMSUNG Electronics Co., Ltd. (Korea, Republic of)
Suein Son, SAMSUNG Electronics Co., Ltd. (Korea, Republic of)


Published in SPIE Proceedings Vol. 10810:
Photomask Technology 2018
Emily E. Gallagher; Jed H. Rankin, Editor(s)

© SPIE. Terms of Use
Back to Top