Share Email Print

Proceedings Paper • new

Optimal geometry of solar cells with genetics algorithm
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The introduction of flexible solar cells embedded in fabrics motivates the search for more efficient solar cell designs than flat panels. The optimal configuration of solar cells should receive the maximal flux density of sunlight rays over the course of a year. There may also be spatial restrictions which only allow the cells to cover an arbitrary roof or area and surrounding structures which cast shadows in that area. So, it is difficult to analytically find the most efficient way to cover an arbitrary surface on Earth with solar cells. The genetic algorithm was used to find the optimal geometry for solar cells that have constant footprints at various latitudes. Random configurations of solar cells covering a constant area evolved into efficient configurations under the guidance of chosen selection, crossover, and mutation mechanisms. The results allow us to cover arbitrary roofs or areas as efficiently as possible, which greatly increases the value of solar energy.

Paper Details

Date Published: 27 February 2019
PDF: 7 pages
Proc. SPIE 10913, Physics, Simulation, and Photonic Engineering of Photovoltaic Devices VIII, 109131K (27 February 2019); doi: 10.1117/12.2510943
Show Author Affiliations
Rahul Chowdhury, The City College of New York (United States)
Małgorzata Marciniak, LaGuardia Community College (United States)

Published in SPIE Proceedings Vol. 10913:
Physics, Simulation, and Photonic Engineering of Photovoltaic Devices VIII
Alexandre Freundlich; Laurent Lombez; Masakazu Sugiyama, Editor(s)

© SPIE. Terms of Use
Back to Top