Share Email Print

Proceedings Paper • new

High throughput optical analysis and sorting of cells and particles in microfluidic systems
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Nowadays, high-speed video microscopy is used in many applications like microrheology1, 2 or flow cytometry3 to measure mechanical properties of cells or to identify their type. Typically, high-speed cameras use buffering to reach very high frame rates due to the limited bandwidth of the interface to a PC like Ethernet or USB. Additionally, analysis of large data is compute-intense and in many cases difficult to do online. We developed a system that consists of a high speed CMOS image sensor combined with a field programmable gate array (FPGA) and a pulsed LED illumination system. Due to an image transformation that is done on the FPGA, the dimensionality of the data is reduced without loss of important information. This leads to a significant reduction of the amount of data as well as to noise reduction as a side effect. Furthermore, we developed a modular analysis toolkit that can be used to do the whole analysis directly on the same FPGA online so that buffering is not required and measurements can run continuously on high frame rates. Hence, we can analyze a large total number of objects at very high throughput rates in microfluidic devices. We present the analysis of diluted whole blood in a microfluidic system with our device as well as a sorting application that uses multiple regions of interest that are observed simultaneously so that particles can be analyzed before and after a manipulation or gate.

Paper Details

Date Published: 4 March 2019
PDF: 6 pages
Proc. SPIE 10875, Microfluidics, BioMEMS, and Medical Microsystems XVII, 1087517 (4 March 2019); doi: 10.1117/12.2510160
Show Author Affiliations
Daniel Geiger, Univ. Ulm (Germany)
Tobias Neckernuss, Univ. Ulm (Germany)
Jonas Pfeil, Univ. Ulm (Germany)
Patricia Schwilling, Univ. Ulm (Germany)
Othmar Marti, Univ. Ulm (Germany)

Published in SPIE Proceedings Vol. 10875:
Microfluidics, BioMEMS, and Medical Microsystems XVII
Bonnie L. Gray; Holger Becker, Editor(s)

© SPIE. Terms of Use
Back to Top