Share Email Print
cover

Proceedings Paper • new

Micro pixel LEDs: design challenge and implementation for high-resolution headlamps
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

High-resolution vehicle headlamps represent a future-oriented technology that can be used to increase traffic safety and driving comfort. Typically, selective absorbing of light using a spatial modulator like DMD, LCD or LCoS creates the light distribution of such headlamp systems. A similar effect can be generated by using LED arrays. Its additive principle generates light only in specific segments if necessary. In general, these arrays can be distinguished between conventional LEDs arranged in an array and micro pixel LEDs. Conventional LED arrays characterize by the design (THT or SMD) with typically a few millimeters edge length. In contrast, a micro-pixel LED uses COB technology, in which individual LED dies are packed in a single housing directly next to each other at a distance of a few microns. By increasing the array resolution, the challenges in designing an optical system for high-resolution headlamps rise. High efficiencies and contrasts call for small, accurate lens geometries and negligibly scattered light effects. Due to limited installation space and manufacturing tolerances, compromises have to be made. Ideally, the optics have to be accurate enough to image each pixel of the micro LED with high contrasts and high efficiency and still be too blurry to project the gaps between each pixel. This results in small distances between LED and optics and therefore in diffcult to manufacture radii of curvature. In this paper we specify the challenges to implement micro pixel LEDs in headlamp systems, as well as present the controllability of scattered light effects of these systems.

Paper Details

Date Published: 1 March 2019
PDF: 9 pages
Proc. SPIE 10940, Light-Emitting Devices, Materials, and Applications, 109401U (1 March 2019); doi: 10.1117/12.2509336
Show Author Affiliations
Marcel Philipp Held, Leibniz Univ. Hannover (Germany)
Gerolf Kloppenburg, Leibniz Univ. Hannover (Germany)
Roland Lachmayer, Leibniz Univ. Hannover (Germany)


Published in SPIE Proceedings Vol. 10940:
Light-Emitting Devices, Materials, and Applications
Jong Kyu Kim; Michael R. Krames; Martin Strassburg, Editor(s)

© SPIE. Terms of Use
Back to Top