Share Email Print
cover

Proceedings Paper • new

Ultraviolet multi-spectral microscopy using iterative phase-recovery from chromatic aberrations
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The ultraviolet region of the spectrum offers unique capabilities for label-free molecular imaging of biological samples by providing highly-specific, quantitative information of many important endogenous biomolecules. However, the application of UV spectral imaging to biomedicine has been limited. To this end, we have recently introduced ultraviolet hyperspectral interferometric (UHI) microscopy, which applies interferometry to overcome significant challenges associated with UV spectroscopy when applied to molecular imaging. Here we present an alternative approach for UV multi-spectral microscopy which enables faster wide-field imaging at the expense of fewer spectral data points. Instead of line-scanning to recover high-resolution spectral information with an imaging spectrometer, we detect a wide field-of-view using a UV-sensitive camera and recover the spectral information using several (>5) UV-filters. Moreover, rather than using interferometry to recover the phase to correct for chromatic aberrations, we leverage the chromatic aberrations themselves to obtain a stack of through-focus intensity images (at various wavelengths) and then apply an iterative solution of the Transport of Intensity (TIE) equation to recover the phase and produce in-focus images at all wavelengths without moving the sample or objective. This configuration greatly simplifies the instrumentation, reducing its footprint and making it less expensive, while enabling fast, wide area imaging with better photon efficiency. We assess the capabilities of this technique through a series of simulations and experiments on red blood cells, which show good quantitative agreement with UHI and tabulated hemoglobin absorption properties. Potential biomedical applications are also discussed.

Paper Details

Date Published: 4 March 2019
PDF: 8 pages
Proc. SPIE 10887, Quantitative Phase Imaging V, 108870M (4 March 2019); doi: 10.1117/12.2508972
Show Author Affiliations
Ashkan Ojaghi, Georgia Institute of Technology & Emory Univ. School of Medicine (United States)
Francisco E. Robles, Georgia Institute of Technology & Emory Univ. School of Medicine (United States)


Published in SPIE Proceedings Vol. 10887:
Quantitative Phase Imaging V
Gabriel Popescu; YongKeun Park, Editor(s)

© SPIE. Terms of Use
Back to Top