Share Email Print
cover

Proceedings Paper

Effects of process parameters on microloading in subhalf-micron aluminum etching
Author(s): Jongweon Youn; Ki-Soo Shin; Hee Kook Park; Daehee Kim
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Microloading effect is one of the challenging phenomena in sub-halfmicron aluminum etching, which represents the decreasing etch rate with shrinking pattern size and open area. Process parameters should be optimized to control etch rate difference in different feature sizes. In this experiment, it is found that pressure and BCl3/Cl2 gas flow ratio are two major factors to affect on etch rate microloading. Under the standard BCl3/Cl2 chemistry, optimizing process parameters is not enough to reduce microloading sufficiently. Therefore, additional gas is introduced to suppress microloading effect less than 10%. N2 or CHF3 gas addition is not effective to improve microloading effect through polymerization mechanism. It is observed that CF4 gas addition is the most successful to minimize microloading effect by enhancing ion assisted chemical reaction in small feature size.

Paper Details

Date Published: 13 September 1996
PDF: 10 pages
Proc. SPIE 2875, Microelectronic Device and Multilevel Interconnection Technology II, (13 September 1996); doi: 10.1117/12.250880
Show Author Affiliations
Jongweon Youn, Hyundai Electronics Industries Co., Ltd. (South Korea)
Ki-Soo Shin, Hyundai Electronics Industries Co., Ltd. (South Korea)
Hee Kook Park, Hyundai Electronics Industries Co., Ltd. (South Korea)
Daehee Kim, Hyundai Electronics Industries Co., Ltd. (South Korea)


Published in SPIE Proceedings Vol. 2875:
Microelectronic Device and Multilevel Interconnection Technology II
Ih-Chin Chen; Nobuo Sasaki; Divyesh N. Patel; Girish A. Dixit, Editor(s)

© SPIE. Terms of Use
Back to Top