Share Email Print

Proceedings Paper • new

Tunable prism based upon novel piezoelectric nanoparticle/sol-gel design used for active solar cells concentrators
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Active solar concentrators attract significant interest in photovoltaic (PV) research activity since they can substantially reduce the area of PV cells while still collecting significant amount of solar energy via large aperture collecting optics. Solar concentrators include lenses or curved mirrors directing light from the sun into a smaller spatial spot falling on the PV cell. However, the main problem of active concentrators, severely limiting their practicality, is the high cost and low angular accuracy of sun tracking apparatuses. Specifically, tracking of the sun in existing concentrators is currently done through elaborate and expensive mechanical/optical systems, which exhibit lower performance over time and require energy input by themselves. In this paper we develop a novel active solar concentrator without any mechanical tracking. We aim to accomplish this goal through designing tunable prisms via novel chemical system comprising nanoparticles (NPs), specifically gold (Au) nanorods and silica NPs, embedded in semi-rigid transparent sol-gel matrixes, and placed within an electrical field. Changing the electrical field changes the partial distribution of the NPs and yields spatial gradient of refraction index, affecting the direction of the collected optical rays and allows their directing towards the PV cell according to the movement of the sun. In the paper we present the design and the realization of the first prototype as well as its preliminary experimental characterization.

Paper Details

Date Published: 27 February 2019
PDF: 8 pages
Proc. SPIE 10913, Physics, Simulation, and Photonic Engineering of Photovoltaic Devices VIII, 109130L (27 February 2019); doi: 10.1117/12.2507423
Show Author Affiliations
Gilad Rachamim, Bar-Ilan Univ. (Israel)
Margarita Ritenberg, Ben-Gurion Univ. of the Negev (Israel)
Raz Jelinek, Ben-Gurion Univ. of the Negev (Israel)
Zeev Zalevsky, Bar-Ilan Univ. (Israel)

Published in SPIE Proceedings Vol. 10913:
Physics, Simulation, and Photonic Engineering of Photovoltaic Devices VIII
Alexandre Freundlich; Laurent Lombez; Masakazu Sugiyama, Editor(s)

© SPIE. Terms of Use
Back to Top