Share Email Print
cover

Proceedings Paper • new

An adaptive mesh refinement based simulation for pressure-deformability analysis of a circulating tumor cell
Author(s): Mohammad Abul Hashem; Xiaolin Chen; Hua Tan
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Circulating tumor cell (CTC), entering into bloodstream from its originating tumor, is found to be responsible for cancer metastases and CTCs’ detection can serve as an important stage for cancer diagnosis. Deformation-based separation technique, which utilizes differences in deformability of the cells, has shown promising abilities in CTC detection and manipulation due to its simplicity, high performance and low cost. In this method, CTCs are trapped while more deformable blood cells (e.g. White Blood Cells) are able to squeeze through the filtration channel at the specified operating pressure. In this work, we employed numerical simulation to study the pressure-deformability behavior of a single cell passing through a cylindrical microfilter. An Adaptive-Mesh-Refinement (AMR) method is employed, which reduces the computational effort by concentrating more on the critical regions of the domain. The cell is modeled as a Newtonian liquid droplet and the effects of different design parameters such as operating flow rate and cell viscosity on pressure signature were studied. Then, the critical pressure for the CTC is analyzed as it plays an important role in device operation. We found that critical pressure is linearly related with the flow rate and the viscosity of the cell. Our study provides an insight into the cell squeezing process and its characteristics, which can be used for designing the nextgeneration deformation-based CTC microfilters.

Paper Details

Date Published: 4 March 2019
PDF: 10 pages
Proc. SPIE 10875, Microfluidics, BioMEMS, and Medical Microsystems XVII, 108750L (4 March 2019); doi: 10.1117/12.2507098
Show Author Affiliations
Mohammad Abul Hashem, Washington State Univ. (United States)
Xiaolin Chen, Washington State Univ. (United States)
Hua Tan, Washington State Univ. (United States)


Published in SPIE Proceedings Vol. 10875:
Microfluidics, BioMEMS, and Medical Microsystems XVII
Bonnie L. Gray; Holger Becker, Editor(s)

© SPIE. Terms of Use
Back to Top