Share Email Print

Proceedings Paper • new

Stitchless 3D printing of free-form functional mesoscale structures with resolution on-demand
Author(s): Linas Jonušauskas; Tomas Baravykas; Dovilė Mackevičiūtė; Tomas Gadišauskas; Vytautas Purlys
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Femtosecond laser based 3D nanolithography is gaining popularity in huge variety of fields. However, further improvements are needed to push it from laboratory level use into a wide spread adaptation. In this work we present several advances needed to achieve this goal. First, linear stage and galvo-scanners synchronization is employed to produce stitch-free mm-sized structures with features down to micrometers. Furthermore, it is shown that by varying objective numerical apertures (NA) from 0.8 NA to 1.4 NA voxel size can be tuned in the range of 330 nm to 1.7 μm in transverse and 1.9 μm to 7.9 μm in longitudinal directions, resulting in voxel volumes from 0.017 μm3 to 3.759 μm3 with structuring rates at 2426 μm3/s and 104767 μm3/s respectively at 1 cm/s translation velocity. This two orders of magnitude tunability is exploited to fabricate various functional structures. It includes 2 mm diameter functional micro-lens, cantilever capable of sustaining multiple deformation cycles and free-movable micromechanical spider and squid (overall size - up to 5 mm), showing possibility to print true 3D hinge-like microstructures (feature size down to micrometers) for possible uses in microrobotics. Overall, the presented results show simple and straight-forward way to combine resolution on-demand and stitch-free 3D laser lithography for functional structure fabrication needed for fast expanding science and/or engineering fields.

Paper Details

Date Published: 4 March 2019
PDF: 11 pages
Proc. SPIE 10930, Advanced Fabrication Technologies for Micro/Nano Optics and Photonics XII, 109300V (4 March 2019); doi: 10.1117/12.2506862
Show Author Affiliations
Linas Jonušauskas, Femtika UAB (Lithuania)
Vilnius Univ. (Lithuania)
Tomas Baravykas, Vilnius Univ. (Lithuania)
Dovilė Mackevičiūtė, Femtika UAB (Lithuania)
Vilnius Univ. (Lithuania)
Tomas Gadišauskas, Vilnius Univ. (Lithuania)
Vytautas Purlys, Femtika UAB (Lithuania)
Vilnius Univ. (Lithuania)

Published in SPIE Proceedings Vol. 10930:
Advanced Fabrication Technologies for Micro/Nano Optics and Photonics XII
Georg von Freymann; Winston V. Schoenfeld; Raymond C. Rumpf, Editor(s)

© SPIE. Terms of Use
Back to Top