Share Email Print
cover

Proceedings Paper • new

Transparent and ultra-flexible PEDOT:PSS/ITO/Ag/ITO on Parylene thin films with tunable properties
Author(s): Weiyang Yang; Jiajia Wu; Qi Hua Fan; Wen Li
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Transparent and flexible conductive materials are critical components in many optoelectronic devices, such as wearable electronics, biosensors, displays, etc. Conventional transparent electrodes made of a single material, such as indium tin oxide (ITO), ultrathin metals, graphene and poly-(3, 4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) have limitations and hardly possess the desired combination of broadband transmittance, low electrical resistivity, mechanical flexibility, and biocompatibility. Herein, we designed and constructed an ultra-flexible, conductive, transparent thin film using a PEDOT:PSS/ITO/Ag/ITO multilayer structure on Parylene C. The multilayer assembly was optimized to achieve the lowest theoretical reflectance by simulating the coatings admittance loci under the preferred reference wavelength. ITO and Ag were deposited consecutively using RF magnetron sputtering at room temperature, followed by spin-coating of PEDOT:PSS. The sputtering deposition temperatures were tuned to achieve the optimal optical and electrical properties. Compared to a single-layer ITO film of equivalent thickness, the multilayer films exhibited significantly decreased sheet resistance, reduced electrochemical impedance, remarkable transmittance, large Young’s modulus values, and superior stability in air and saline. The multilayer films also showed strong adhesion to the Parylene C substrate and subsequently excellent bending tolerance. Moreover, the peak transmittance of our multilayer flexible thin films could be tailored to a specific wavelength for particular applications, such as optogenetics that utilizes light of different wavelengths to excite or inhibit the activity of genetically targeted neurons or intracellular signaling pathways.

Paper Details

Date Published: 1 March 2019
PDF: 8 pages
Proc. SPIE 10919, Oxide-based Materials and Devices X, 109191W (1 March 2019); doi: 10.1117/12.2506708
Show Author Affiliations
Weiyang Yang, Michigan State Univ. (United States)
Jiajia Wu, Michigan State Univ. (United States)
Qi Hua Fan, Michigan State Univ. (United States)
Wen Li, Michigan State Univ. (United States)


Published in SPIE Proceedings Vol. 10919:
Oxide-based Materials and Devices X
David J. Rogers; David C. Look; Ferechteh H. Teherani, Editor(s)

© SPIE. Terms of Use
Back to Top