Share Email Print
cover

Proceedings Paper • new

Suppression of indium clustering and quantum confined stark effect of InGaN LED on silicon (111)
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Optical properties of InGaN/GaN multi-quantum-well (MQWs) grown on sapphire and on Si(111) are reported. The tensile strain in the MQW on Si is shown to be beneficial for indium incorporation and Quantum-confined Stark Effect reduction in the multi-quantum wells. Raman spectroscopy reveals compressive strains of -0.107% in MQW on sapphire and tensile strain of +0.088% in MQW on Si. Temperature-dependent photoluminescence shows in MQW on sapphire a strong (30 meV peak-to-peak) S-shaped wavelength shift with decreasing temperature (6 K to 300K), whereas MQW on Si luminescence wavelength is stable and red-shifts monotonically. Micro-photoluminescence mapping over 200 by 200 μm2 shows the emission wavelength spatial uniformity of MQW on Si is 2.6 times higher than MQW on sapphire, possibly due to a more uniform indium incorporation in the multi-quantum-wells as a result of the tensile strain in MQW on Si. A positive correlation between emission energy and intensity is observed in MQW on sapphire but not in those on Si. Despite the lower crystal quality of MQW on Si revealed by atomic force microscopy, it exhibits a higher internal quantum efficiency (IQE) than MQW on sapphire from 6 K to 250 K, and equalizes at 300 K. Overall, MQW on Si exhibits a high IQE, higher wavelength spatial uniformity and temperature stability, while providing a much more scalable platform than MQW on sapphire for next generation integrated photonics.

Paper Details

Date Published: 1 March 2019
PDF: 6 pages
Proc. SPIE 10918, Gallium Nitride Materials and Devices XIV, 1091822 (1 March 2019); doi: 10.1117/12.2506426
Show Author Affiliations
Richard Liu, Univ. of Illinois (United States)
Callan McCormick, Univ. of Illinois (United States)
Can Bayram, Univ. of Illinois (United States)


Published in SPIE Proceedings Vol. 10918:
Gallium Nitride Materials and Devices XIV
Hiroshi Fujioka; Hadis Morkoç; Ulrich T. Schwarz, Editor(s)

© SPIE. Terms of Use
Back to Top