Share Email Print

Proceedings Paper

New high-resolution displacement sensor based on surface plasmon resonance
Author(s): Giancarlo Margheri; Andrea Mannoni; Franco Quercioli
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In this work we report on a novel angular and positional sensor based on the phenomenon of attenuated total reflection that occurs at a metal-dielectric interface when the conditions for the excitation of a surface plasma wave in Kretschmann configuration are satisfied. The reflectivity of the metallic surface exhibits a very sharp dip at an angle of incidence corresponding to the phase-matching condition for the coupling of energy from the incident beam to the resonant surface mode. The typical width of the resonance is a few mrad, thus making feasible the direct measurement of small angular movements by just detecting the intensity of the reflected light. By means of a simple optical setup this sensitivity can be exploited to build a position-sensitive detector capable of nanometric resolution. Tests have been carried out on several Ag depositions. The angular resolution obtained has been in the 0.2 to 0.4 arcsecs range; the sensitivity to linear displacements has been tested monitoring the motion of piezoelectric actuators and is better than 5 nm over a range of a few microns. We have verified that the proposed method does not require beams of high optical quality and permits in principle a considerable simplification over interferometric systems. Well-established technological processes might be used for its implementation, keeping its cost at a competitive level with respect to other devices of the same potential sensitivity.

Paper Details

Date Published: 26 August 1996
PDF: 10 pages
Proc. SPIE 2783, Micro-Optical Technologies for Measurement, Sensors, and Microsystems, (26 August 1996); doi: 10.1117/12.248491
Show Author Affiliations
Giancarlo Margheri, Istituto Nazionale di Ottica (Italy)
Andrea Mannoni, Istituto Nazionale di Ottica (Italy)
Franco Quercioli, Istituto Nazionale di Ottica (Italy)

Published in SPIE Proceedings Vol. 2783:
Micro-Optical Technologies for Measurement, Sensors, and Microsystems
Olivier M. Parriaux, Editor(s)

© SPIE. Terms of Use
Back to Top