Share Email Print

Proceedings Paper

Optimized x/y scanning head for laser beam positioning
Author(s): Michael Muth
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

As a fast two-axis deflection unit for laser beam positioning, an X/Y scanning head based on two galvanometric scanners with vertical crossed axes is a central component of different applications in industry, medicine and communications. Some of these are laser markers, stereolithography devices, scanning laser vibrometers, laser trimmers, laser cutting machines, infrared scanners, lead bonders, Q-switches, laser ophthalmoscope, robotic vision systems, range finders, image digitizers, and laser graphic projectors for entertainment. Velocity and accuracy of the X/Y scanning heads are very important for the performance of the devices in which they are used. Therefore the dynamic properties of the X/Y scanning head must be optimized. One important criterion is the mass moment of inertia of the second scanning mirror. It can be reduced by inclining the axis of the first galvanometric scanner. To solve these problems both computer tools for the optical and mechanical optimization, and measuring devices to minimize the wobble and jitter of galvanometric scanners were developed. The development of scanning heads for different apertures (laser beam diameters), scan angles and F-(Theta) -objectives was done for SCANLAB GmbH (Puchheim/Munchen, Germany), one of the three leading manufacturers for galvanometric scanners.

Paper Details

Date Published: 23 August 1996
PDF: 10 pages
Proc. SPIE 2774, Design and Engineering of Optical Systems, (23 August 1996); doi: 10.1117/12.246700
Show Author Affiliations
Michael Muth, Technische Univ. Muenchen (Germany)

Published in SPIE Proceedings Vol. 2774:
Design and Engineering of Optical Systems
Joseph J. M. Braat, Editor(s)

© SPIE. Terms of Use
Back to Top