Share Email Print

Proceedings Paper

Neural-fuzzy controller for real-time mobile robot navigation
Author(s): Kim C. Ng; Mohan M. Trivedi
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A neural integrated fuzzy controller (NiF-T), which integrates the fuzzy logic representation of human knowledge with the learning capability of neural networks, is developed for nonlinear dynamic control problems. The NiF-T architecture comprises three distinct parts: (1) fuzzy logic membership functions (FMF), (2) rule neural network (RNN), and (3) output-refinement neural network (ORNN). FMF are utilized to fuzzify input parameters. RNN interpolates the fuzzy rule set; after defuzzification, the output is used to train ORNN. The weights of the ORNN can be adjusted on-line to fine-tune the controller. NiF-T can be applied for a wide range of sensor-driven robotics applications, which are characterized by high noise levels and nonlinear behavior, and where system models are unavailable or are unreliable. In this paper, real-time implementations of autonomous mobile robot navigation utilizing the NiF-T are realized. Only five rules were used to train the wall following behavior, while nine were used for the hall centering. With learning capability, the robot, SMAR-T, successfully and reliably hugs wall, and locks onto hall center. For all of the described behaviors, their RNNs are trained only for a few hundred iterations and so are their ORNNs trained only for less than one hundred iterations to learn their parent rule sets.

Paper Details

Date Published: 14 June 1996
PDF: 12 pages
Proc. SPIE 2761, Applications of Fuzzy Logic Technology III, (14 June 1996); doi: 10.1117/12.243253
Show Author Affiliations
Kim C. Ng, Univ. of California/San Diego (United States)
Mohan M. Trivedi, Univ. of California/San Diego (United States)

Published in SPIE Proceedings Vol. 2761:
Applications of Fuzzy Logic Technology III
Bruno Bosacchi; James C. Bezdek, Editor(s)

© SPIE. Terms of Use
Back to Top