Share Email Print
cover

Proceedings Paper

Analysis of the computed-tomography imaging spectrometer by singular-value decomposition
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

A linear spatially variant imaging system, such as the computed-tomography imaging spectrometer (CTIS), is naturally described by means of a system matrix that represents the mapping from object space (three dimensional, in this case) to image space (two-dimensional). Such a matrix can be analyzed to reveal a set of vectors {u} that span the object space. In addition, a spectrum of singular values is obtained that defines the contribution of each vector u to the image space. We present the results of such an analysis for two simulated CTIS systems, each with a different number of dispersed images, and an experimental CTIS. The structure of the vectors is consistent with expectations due to the central-slice theorem.

Paper Details

Date Published: 17 June 1996
PDF: 7 pages
Proc. SPIE 2758, Algorithms for Multispectral and Hyperspectral Imagery II, (17 June 1996); doi: 10.1117/12.243235
Show Author Affiliations
Michael R. Descour, Optical Sciences Ctr./Univ. of Arizona (United States)
Robert A. Schowengerdt, Optical Sciences Ctr./Univ. of Arizona (United States)
Eustace L. Dereniak, Optical Sciences Ctr./Univ. of Arizona (United States)


Published in SPIE Proceedings Vol. 2758:
Algorithms for Multispectral and Hyperspectral Imagery II
A. Evan Iverson, Editor(s)

© SPIE. Terms of Use
Back to Top