Share Email Print

Proceedings Paper

Evaluating an image-fusion algorithm with synthetic image generation tools
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

An algorithm that combines spectral mixing and nonlinear optimization is used to fuse multiresolution images. Image fusion merges images of different spatial and spectral resolutions to create a high spatial resolution multispectral combination. High spectral resolution allows identification of materials in the scene, while high spatial resolution locates those materials. In this algorithm, conventional spectral mixing estimates the percentage of each material (called endmembers) within each low resolution pixel. Three spectral mixing models are compared; unconstrained, partially constrained, and fully constrained. In the partially constrained application, the endmember fractions are required to sum to one. In the fully constrained application, all fractions are additionally required to lie between zero and one. While negative fractions seem inappropriate, they can arise from random spectral realizations of the materials. In the second part of the algorithm, the low resolution fractions are used as inputs to a constrained nonlinear optimization that calculates the endmember fractions for the high resolution pixels. The constraints mirror the low resolution constraints and maintain consistency with the low resolution fraction results. The algorithm can use one or more higher resolution sharpening images to locate the endmembers to high spatial accuracy. The algorithm was evaluated with synthetic image generation (SIG) tools. A SIG developed image can be used to control the various error sources that are likely to impair the algorithm performance. These error sources include atmospheric effects, mismodeled spectral endmembers, and variability in topography and illumination. By controlling the introduction of these errors, the robustness of the algorithm can be studied and improved upon. The motivation for this research is to take advantage of the next generation of multi/hyperspectral sensors. Although the hyperspectral images will be of modest to low resolution, fusing them with high resolution sharpening images will produce a higher spatial resolution land cover or material map.

Paper Details

Date Published: 17 June 1996
PDF: 12 pages
Proc. SPIE 2758, Algorithms for Multispectral and Hyperspectral Imagery II, (17 June 1996); doi: 10.1117/12.243209
Show Author Affiliations
Harry N. Gross, Rochester Institute of Technology (United States)
John R. Schott, Rochester Institute of Technology (United States)

Published in SPIE Proceedings Vol. 2758:
Algorithms for Multispectral and Hyperspectral Imagery II
A. Evan Iverson, Editor(s)

© SPIE. Terms of Use
Back to Top