Share Email Print
cover

Proceedings Paper

In-situ investigation of the low-pressure MOCVD growth of III-V compounds using reflectance anisotropy measurements
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Recent in situ applications of reflectance anisotropy (RA) to the study of the growth of 111-V materials by low pressure MOCVD are reviewed. These results illustrate the extreme sensitivity of the RA technique. During heterojunction growth the first 1-2 seconds are dominated by the change of group V species. Over the time scale of several minutes the signal exhibits damped oscillations correlated to the growth rate. An optical model is proposed to account for this behaviour. A difference in the optical anisotropy between growing and non-growing AsH3 stabilized InAs surface is observed. Large reflectance anisotropies during the growth of lattice-mismatched semiconductors are also presented. It is shown that these anisotropies are related to 3-dimensional growth. The beginning of the lattice-mismatched growth is quantitatively described by an optical model based on effective medium theories. More generally RA technique appears a very promising new method for in situ monitoring of epitaxial processes.

Paper Details

Date Published: 1 March 1991
PDF: 13 pages
Proc. SPIE 1361, Physical Concepts of Materials for Novel Optoelectronic Device Applications I: Materials Growth and Characterization, (1 March 1991); doi: 10.1117/12.24320
Show Author Affiliations
Bernard Drevillon, Ecole Polytechnique (France)
Manijeh Razeghi, Thomson-CSF (United States)


Published in SPIE Proceedings Vol. 1361:
Physical Concepts of Materials for Novel Optoelectronic Device Applications I: Materials Growth and Characterization
Manijeh Razeghi, Editor(s)

© SPIE. Terms of Use
Back to Top