Share Email Print
cover

Proceedings Paper

In-situ investigation of the low-pressure MOCVD growth of III-V compounds using reflectance anisotropy measurements
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Recent in situ applications of reflectance anisotropy (RA) to the study of the growth of 111-V materials by low pressure MOCVD are reviewed. These results illustrate the extreme sensitivity of the RA technique. During heterojunction growth the first 1-2 seconds are dominated by the change of group V species. Over the time scale of several minutes the signal exhibits damped oscillations correlated to the growth rate. An optical model is proposed to account for this behaviour. A difference in the optical anisotropy between growing and non-growing AsH3 stabilized InAs surface is observed. Large reflectance anisotropies during the growth of lattice-mismatched semiconductors are also presented. It is shown that these anisotropies are related to 3-dimensional growth. The beginning of the lattice-mismatched growth is quantitatively described by an optical model based on effective medium theories. More generally RA technique appears a very promising new method for in situ monitoring of epitaxial processes.

Paper Details

Date Published: 1 March 1991
PDF: 13 pages
Proc. SPIE 1361, Physical Concepts of Materials for Novel Optoelectronic Device Applications I: Materials Growth and Characterization, (1 March 1991); doi: 10.1117/12.24320
Show Author Affiliations
Bernard Drevillon, Ecole Polytechnique (France)
Manijeh Razeghi, Thomson-CSF (United States)


Published in SPIE Proceedings Vol. 1361:
Physical Concepts of Materials for Novel Optoelectronic Device Applications I: Materials Growth and Characterization

© SPIE. Terms of Use
Back to Top