Share Email Print

Proceedings Paper

ARPA/NIJ/Rome Laboratory concealed weapon detection program: an overview
Author(s): Nicholas C. Currie; Fred J. Demma; David D. Ferris; Robert W. McMillan; Michael C. Wicks
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Recent advances in passive and active imaging and non- imaging sensor technology offer the potential to detect weapons that are concealed beneath a person's clothing. Sensors that are discussed in this paper are characterized as either non-imaging or imaging. Non-imaging sensors include wide band radar and portal devices such as metal detectors. In general the strength of non-imaging sensors rest with the fact that they are generally inexpensive and can rapidly perform bulk separation between regions where persons are likely to be carrying concealed weapons and those regions that are likely to contain persons who are unarmed. The bulk process is typically accomplished at the expense of false alarm rate. Millimeter-wave (MMW), microwave, x-ray, acoustic, magnetic, and infrared (IR) imaging sensor technologies provide with greater certainty the means to isolate persons within a crowd that are carrying concealed weapons and to identify the weapon type. The increased certainty associated with imaging sensors is accomplished at the expense of cost and bulk surveillance of the crowd. CWD technologies have a variety of military and civilian applications. This technology focus area addresses specific military needs under the Defense Advanced Research Projects Agency's (DARPA) operations other than war/law enforcement (OOTW/LE). Additionally, this technology has numerous civilian law enforcement applications that are being investigated under the National Institute of Justice's (NIJ) Concealed Weapons Detection program. This paper discusses the wide variety of sensors that might be employed in support of a typical scenario, the strengths and weaknesses of each of the sensors relative to the given scenario, and how CWD breadboards will be tested to determine the optimal CWD application. It rapidly becomes apparent that no single sensor will completely satisfy the CWD mission necessitating the fusion of two or more of these sensors.

Paper Details

Date Published: 14 June 1996
PDF: 11 pages
Proc. SPIE 2755, Signal Processing, Sensor Fusion, and Target Recognition V, (14 June 1996); doi: 10.1117/12.243190
Show Author Affiliations
Nicholas C. Currie, Rome Lab. (United States)
Fred J. Demma, Rome Lab. (United States)
David D. Ferris, Rome Lab. (United States)
Robert W. McMillan, Rome Lab. (United States)
Michael C. Wicks, Rome Lab. (United States)

Published in SPIE Proceedings Vol. 2755:
Signal Processing, Sensor Fusion, and Target Recognition V
Ivan Kadar; Vibeke Libby, Editor(s)

© SPIE. Terms of Use
Back to Top