Share Email Print
cover

Proceedings Paper

Tactical weapons algorithm development for unitary and fused systems
Author(s): Sunjay E. Talele; John S. Watson; Bradford D. Williams; Sengvieng A. Amphay
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

A much needed capability in today's tactical Air Force is weapons systems capable of precision guidance in all weather conditions against targets in high clutter backgrounds. To achieve this capability, the Armament Directorate of Wright Laboratory, WL/MN, has been exploring various seeker technologies, including multi-sensor fusion, that may yield cost effective systems capable of operating under these conditions. A critical component of these seeker systems is their autonomous acquisition and tracking algorithms. It is these algorithms which will enable the autonomous operation of the weapons systems in the battlefield. In the past, a majority of the tactical weapon algorithms were developed in a manner which resulted in codes that were not releasable to the community, either because they were considered company proprietary or competition sensitive. As a result, the knowledge gained from these efforts was not transitioning through the technical community, thereby inhibiting the evolution of their development. In order to overcome this limitation, WL/MN has embarked upon a program to develop non-proprietary multi-sensor acquisition and tracking algorithms. To facilitate this development, a testbed has been constructed consisting of the Irma signature prediction model, data analysis workstations, and the modular algorithm concept evaluation tool (MACET) algorithm. All three of these components have been enhanced to accommodate both multi-spectral sensor fusion systems and the there dimensional signal processing techniques characteristic of ladar. MACET is a graphical interface driven system for rapid prototyping and evaluation of both unitary and fused sensor algorithms. This paper describes the MACET system and specifically elaborates on the three-dimensional capabilities recently incorporated into it.

Paper Details

Date Published: 14 June 1996
PDF: 12 pages
Proc. SPIE 2755, Signal Processing, Sensor Fusion, and Target Recognition V, (14 June 1996); doi: 10.1117/12.243167
Show Author Affiliations
Sunjay E. Talele, Nichols Research Corp. (United States)
John S. Watson, Nichols Research Corp. (United States)
Bradford D. Williams, Nichols Research Corp. (United States)
Sengvieng A. Amphay, Air Force Wright Lab. (United States)


Published in SPIE Proceedings Vol. 2755:
Signal Processing, Sensor Fusion, and Target Recognition V
Ivan Kadar; Vibeke Libby, Editor(s)

© SPIE. Terms of Use
Back to Top