Share Email Print

Proceedings Paper

Practical topography design for alternating phase-shifting mask
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Topographical structures for a dual-trench type alternating phase-shifting mask whose shifters were made of perpendicular trenches with different depth alternately, have been successfully designed using direct Maxwell's equation solver. The structures could reduce the difference of the adjacent peak intensities of the grouped line image on the wafer due to light scattering effects at sidewalls of the trenches. Detailed design of the structures was performed in accordance with the concept of 'effective transmission' and 'effective phase error'. It was clear that the former could be controlled by shallow trench depth, and the latter, which was defined as the phase difference between 'effective phase difference' and 180 degrees, could be reduced by controlling the difference in depth between deep and shallow trenches. For 0.175micrometers lines and spaces, the optimum shallow and deep trench depths corresponded to approximately 270 degrees and 447 degrees in phase, respectively. After the optimization, the depth of focus obtained by exposure-defocus tree was about 0.9 times as large as that obtained for an ideal alternating PSM having rectangle-shaped distribution of complex transmission (Kirchhoff's assumption).

Paper Details

Date Published: 7 June 1996
PDF: 12 pages
Proc. SPIE 2726, Optical Microlithography IX, (7 June 1996); doi: 10.1117/12.240919
Show Author Affiliations
Satoshi Tanaka, Toshiba Corp. (Japan)
Hiroko Nakamura, Toshiba Corp. (Japan)
Kenji Kawano, Toshiba Corp. (Japan)
Soichi Inoue, Toshiba Corp. (Japan)

Published in SPIE Proceedings Vol. 2726:
Optical Microlithography IX
Gene E. Fuller, Editor(s)

© SPIE. Terms of Use
Back to Top