Share Email Print
cover

Proceedings Paper

Simulation and modeling of electron-beam lithography for delineating 0.2-um line and space patterns
Author(s): Young-Mog Ham; Changbuhm Lee; Taewon Suh; KukJin Chun; Jong-Duk Lee
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

This paper reports the initial results and experimental approach method on three-dimensional simulation and modeling of electron beam lithography in the 0.2micrometers line and space patterns. We studied the electron scattering distribution in the resist, the energy distribution of patterns and the developement mechanism for profile formation. The simplified string model of three-dimensions is used to remove the pattern exposed by direct writing. Development rate is experimentally decided as the dependency of dose, development time, and resisit characteristics in the solvents to delineate 0.2micrometers /0.3micrometers line and space patterns for negative and positive resist. As a result, we obtained the optimum resist profile of 0.2micrometers line and space patterns with various forms as the variance of exposure energy and develop time. Also, we can see the proximity effects in generating pattern. These results agree with actual process for deep sub-micron patterns.

Paper Details

Date Published: 27 May 1996
PDF: 10 pages
Proc. SPIE 2723, Electron-Beam, X-Ray, EUV, and Ion-Beam Submicrometer Lithographies for Manufacturing VI, (27 May 1996); doi: 10.1117/12.240466
Show Author Affiliations
Young-Mog Ham, Seoul National Univ. (South Korea)
Changbuhm Lee, Seoul National Univ. (South Korea)
Taewon Suh, Seoul National Univ. (South Korea)
KukJin Chun, Seoul National Univ. (South Korea)
Jong-Duk Lee, Seoul National Univ. (South Korea)


Published in SPIE Proceedings Vol. 2723:
Electron-Beam, X-Ray, EUV, and Ion-Beam Submicrometer Lithographies for Manufacturing VI
David E. Seeger, Editor(s)

© SPIE. Terms of Use
Back to Top