Share Email Print
cover

Proceedings Paper

Micro-Raman and luminescence spectroscopic techniques for the characterization and process control of Rb+ exchanged KTiOPO4 waveguides
Author(s): David D. Tuschel; Suzanne D. Lau; William P. Risk
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The fabrication of ion-exchanged waveguides with high-frequency doubling conversion efficiency requires high-quality crystalline substrates, an understanding of the effects of partial cation exchange on the optical properties of the waveguide, and control of the degree and effects of ion-exchange. To address these needs we have developed micro-Raman and luminescence spectroscopic techniques for the characterization and process control of Rb+ exchanged KTiOPO4 (R/KTP) waveguides. We report on the use of laser excited luminescence to screen device substrates for unacceptable levels of impurity transition metals, which contribute to photorefraction and optical losses due to absorption. Micro-Raman spectroscopy has been used to probe types of R/KTP channel waveguides for the degree and effects of Rb+ exchange. The high spatial resolution and nondestructive nature of micro-Raman spectroscopy make it suitable as a probe for in situ characterization of photonic devices. Specifically, micro-Raman spectroscopy can detect cation-exchange induced changes in the polarizability, reduction of crystal symmetry, and changes in the chemical bonding and orientation of TiO6 octahedra, the anionic groups primarily responsible for the nonlinear properties of the materia. Individual R/KTP waveguides from different devices have been studied by micro-Raman spectroscopy and structural differences have been detected. The uniformity of a channel waveguide is another quality that can be readily probed and quantified by micro-Raman spectroscopy.

Paper Details

Date Published: 10 May 1996
PDF: 12 pages
Proc. SPIE 2700, Nonlinear Frequency Generation and Conversion, (10 May 1996); doi: 10.1117/12.239672
Show Author Affiliations
David D. Tuschel, Eastman Kodak Co. (United States)
Suzanne D. Lau, Uniphase Corp. (United States)
William P. Risk, IBM Almaden Research Ctr. (United States)


Published in SPIE Proceedings Vol. 2700:
Nonlinear Frequency Generation and Conversion
Mool C. Gupta; William J. Kozlovsky; David C. MacPherson, Editor(s)

© SPIE. Terms of Use
Back to Top