Share Email Print
cover

Proceedings Paper

Chatter supression through variable impedance and smart fluids
Author(s): Daniel J. Segalman; James M. Redmond
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

A novel approach to mitigating chatter vibrations in machine tools is presented. Encountered in many types of metal removal processes, chatter is a dangerous condition which results from the interaction of the cutting dynamics with the modal characteristics of the machine- workpiece assembly. Tool vibrations are recorded on the surface of the workpiece during metal removal, imposing a waviness which alters the chip thickness during subsequent cutting passes. Deviations from the nominal chip thickness effect changes in the cutting force which, under certain conditions, can further excite vibrations. The chatter mitigation strategy presented is based on periodically altering the impedance of the cutting tool assembly. A cyclic electric (or magnetic) field is applied to the spindle quill which contains an electro- rheological (or magneto-rheological) fluid. The variable yield stress in the fluid affects the coupling of the spindle to the machine tool structure, changing the natural frequency of oscillation. Altering the modal characteristics in this fashion disrupts the modulation of current tool vibrations with previous tool vibrations recorded on the workpiece surface. Results from a simulated milling process reveal that significant reductions in vibration amplitude can be achieved through proper selection of fluid and excitation frequency.

Paper Details

Date Published: 1 May 1996
PDF: 11 pages
Proc. SPIE 2721, Smart Structures and Materials 1996: Industrial and Commercial Applications of Smart Structures Technologies, (1 May 1996); doi: 10.1117/12.239147
Show Author Affiliations
Daniel J. Segalman, Sandia National Labs. (United States)
James M. Redmond, Sandia National Labs. (United States)


Published in SPIE Proceedings Vol. 2721:
Smart Structures and Materials 1996: Industrial and Commercial Applications of Smart Structures Technologies
C. Robert Crowe, Editor(s)

© SPIE. Terms of Use
Back to Top