Share Email Print

Proceedings Paper

Investigation of passive and adaptive passive dynamic absorbers applied to an automatic washer suspension design
Author(s): John C. Aldrin; Daniel Carroll Conrad; Werner Soedel
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Alternative vibration control systems are of interest to the appliance industry to improve the performance of the automatic washer suspension. Consumer benefits from improved suspension performance include noise and vibration reduction, lighter machines and larger baskets for increased clothes load capacity. Passive dynamic absorbers are investigated because of their ability to control system resonances and absorb energy from vibrating components. Since the suspended mass is variable due to different clothes loads and the amount of water in the clothes, performance limitations exist for the passive vibration absorber. Adaptive passive dynamic absorbers are investigated as an alternative vibration control system. A set of design variables and constraints for a fundamental model of an automatic washer suspension incorporating both passive and adaptive passive dynamic absorbers is presented. Numerical integration is used to obtain each system response. Optimization of the fundamental automatic washer model incorporating a passive dynamic absorber is performed. Design of experiment techniques and general design studies are used to gain information concerning the importance of the design variables on the performance of the adaptive passive dynamic absorber. Both ideal and real absorber stiffness controller schemes are investigated. The results suggest some benefit of applying adaptive passive dynamic absorbers. Design constraints are found to play a major role in the feasibility of application of this technology to the appliance industry. When considering design cost and performance, the optimum passive dynamic absorber is shown to be the better choice. Examples of various methods of implementation of both passive and adaptive passive dynamic absorbers to an automatic washer are presented.

Paper Details

Date Published: 1 May 1996
PDF: 12 pages
Proc. SPIE 2720, Smart Structures and Materials 1996: Passive Damping and Isolation, (1 May 1996); doi: 10.1117/12.239111
Show Author Affiliations
John C. Aldrin, Whirlpool Corp. (United States)
Daniel Carroll Conrad, Whirlpool Corp. (United States)
Werner Soedel, Purdue Univ. (United States)

Published in SPIE Proceedings Vol. 2720:
Smart Structures and Materials 1996: Passive Damping and Isolation
Conor D. Johnson, Editor(s)

© SPIE. Terms of Use
Back to Top