Share Email Print

Proceedings Paper

Implementation of a foveated image coding system for image bandwidth reduction
Author(s): Philip Kortum; Wilson S. Geisler
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We have developed a preliminary version of a foveated imaging system, implemented on a general purpose computer, which greatly reduces the transmission bandwidth of images. The system is based on the fact that the spatial resolution of the human eye is space variant, decreasing with increasing eccentricity from the point of gaze. By taking advantage of this fact, it is possible to create an image that is almost perceptually indistinguishable from a constant resolution image, but requires substantially less information to code it. This is accomplished by degrading the resolution of the image so that it matches the space-variant degradation in the resolution of the human eye. Eye movements are recorded so that the high resolution region of the image can be kept aligned with the high resolution region of the human visual system. This system has demonstrated that significant reductions in bandwidth can be achieved while still maintaining access to high detail at any point in an image. The system has been tested using 256 by 256 8 bit gray scale images with a 20 degree field-of-view and eye-movement update rates of 30 Hz (display refresh was 60 Hz). users of the system have reported minimal perceptual artifacts at bandwidth reductions of up to 94.7% (a factor of 18.8). Bandwidth reduction factors of over 100 are expected once lossless compression techniques are added to the system.

Paper Details

Date Published: 22 April 1996
PDF: 11 pages
Proc. SPIE 2657, Human Vision and Electronic Imaging, (22 April 1996); doi: 10.1117/12.238732
Show Author Affiliations
Philip Kortum, Univ. of Texas/Austin (United States)
Wilson S. Geisler, Univ. of Texas/Austin (United States)

Published in SPIE Proceedings Vol. 2657:
Human Vision and Electronic Imaging
Bernice E. Rogowitz; Jan P. Allebach, Editor(s)

© SPIE. Terms of Use
Back to Top