Share Email Print
cover

Proceedings Paper

Experimental comparison of dual-energy x-ray image detectors
Author(s): Robert E. Alvarez; James Anthony Seibert
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Many different types of detectors are used for dual energy x-ray radiography. We developed an objective, technology independent, experimental method to compare the performance of these detectors. Our method uses a quality factor defined as the signal to noise ratio squared divided by the dose. We measure this quality factor by making images of a calibration phantom containing steps with known aluminum and plastic thickness. From the energy selective data, we compute an aluminum equivalent thickness image. The signal is the difference in the average value between two steps of the phantom with different aluminum thickness. The noise is the standard deviation of the computed values over the steps. The dose is the incident x-ray exposure. We applied this method to compare three energy selective detectors: (1) a single exposure, double screen, 'sandwich' storage phosphor detector, (2) an active storage phosphor detector using two exposures with different x-ray tube voltages with a light pulse erasing the front screen signal between x-ray exposures, and (3) a single exposure, double screen film detector. We found that the quality factor of the active detector is much larger than the single exposure film detector which in turn is substantially larger than the single exposure, storage phosphor detector.

Paper Details

Date Published: 11 April 1996
PDF: 10 pages
Proc. SPIE 2708, Medical Imaging 1996: Physics of Medical Imaging, (11 April 1996); doi: 10.1117/12.237816
Show Author Affiliations
Robert E. Alvarez, Aprend Technology (United States)
James Anthony Seibert, Univ. of California/Davis Medical Ctr. (United States)


Published in SPIE Proceedings Vol. 2708:
Medical Imaging 1996: Physics of Medical Imaging
Richard L. Van Metter; Jacob Beutel, Editor(s)

© SPIE. Terms of Use
Back to Top