Share Email Print
cover

Proceedings Paper

Improvement of the reliability of laser beam microwelding as interconnection technique
Author(s): Mathias Glasmacher; Hans-Joerg Pucher; Manfred Geiger
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The requirements of actual trends for joining within modern electronics production can be met with the technique of laser beam micro welding, which is the topic of this paper. Thereby component leads are welded directly to the conducting tracks of the circuit board. This technique is not limited to electronics, because fine mechanical parts can be joined with the same equipment, too. The advantages as high temperature strength, reduced manufacturing time and simplified material separation at the end of the life cycle are noted. Furthermore the drawbacks of laser beam micro welding as a competitive joining technique to soldering are discussed. The reasons for the unstable process behavior of different welding scenarios can be understood by taking the changes of some process parameters into account. Since the process reliability can be improved by a proper process design as well as by closed-loop-control, results of finite element calculations of the temperature field as well as experimental setup for the determination of the melting point are presented. Future work is stated to spread the applicability of this joining technique as well as to develop an on-line control for high performance welding of locally restricted structures.

Paper Details

Date Published: 8 April 1996
PDF: 10 pages
Proc. SPIE 2703, Lasers as Tools for Manufacturing of Durable Goods and Microelectronics, (8 April 1996); doi: 10.1117/12.237753
Show Author Affiliations
Mathias Glasmacher, Univ. Erlangen-Nuernberg (Germany)
Hans-Joerg Pucher, Univ. Erlangen-Nuernberg (Germany)
Manfred Geiger, Univ. Erlangen-Nuernberg (Germany)


Published in SPIE Proceedings Vol. 2703:
Lasers as Tools for Manufacturing of Durable Goods and Microelectronics
Jan J. Dubowski; Jyotirmoy Mazumder; Leonard R. Migliore; Chandrasekhar Roychoudhuri; Ronald D. Schaeffer, Editor(s)

© SPIE. Terms of Use
Back to Top