Share Email Print

Proceedings Paper

Monte Carlo simulations incorporating Mie calculations of light transport in tissue phantoms: examination of photon sampling volumes for endoscopically compatible fiber optic probes
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Details of the interaction of photons with tissue phantoms are elucidated using Monte Carlo simulations. In particular, photon sampling volumes and photon pathlengths are determined for a variety of scattering and absorption parameters. The Monte Carlo simulations are specifically designed to model light delivery and collection geometries relevant to clinical applications of optical biopsy techniques. The Monte Carlo simulations assume that light is delivered and collected by two, nearly-adjacent optical fibers and take into account the numerical aperture of the fibers as well as reflectance and refraction at interfaces between different media. To determine the validity of the Monte Carlo simulations for modeling the interactions between the photons and the tissue phantom in these geometries, the simulations were compared to measurements of aqueous suspensions of polystyrene microspheres in the wavelength range 450 - 750 nm.

Paper Details

Date Published: 5 April 1996
PDF: 7 pages
Proc. SPIE 2679, Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases III: Optical Biopsy, (5 April 1996); doi: 10.1117/12.237580
Show Author Affiliations
Judith R. Mourant, Los Alamos National Lab. (United States)
Andreas H. Hielscher, Los Alamos National Lab. (United States)
Irving J. Bigio, Los Alamos National Lab. (United States)

Published in SPIE Proceedings Vol. 2679:
Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases III: Optical Biopsy
Robert R. Alfano; Abraham Katzir, Editor(s)

© SPIE. Terms of Use
Back to Top