Share Email Print
cover

Proceedings Paper

Neural networks using broadband spectral discriminators reduces illumination required for broccoli identification in weedy fields
Author(s): Federico Hahn
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Statistical discriminative analysis and neural networks were used to prove that crop/weed/soil discrimination by optical reflectance was feasible. The wavelengths selected as inputs on those neural networks were ten nanometers width, reducing the total collected radiation for the sensor. Spectral data collected from several farms having different weed populations were introduced to discriminant analysis. The best discriminant wavelengths were used to build a wavelength histogram which selected the three best spectral broadbands for broccoli/weed/soil discrimination. The broadbands were analyzed using a new single broadband discriminator index named the discriminative integration index, DII, and the DII values obtained were used to train a neural network. This paper introduces the index concept, its results and its use for minimizing artificial lightning requirements with broadband spectral measurements for broccoli/weed/soil discrimination.

Paper Details

Date Published: 22 March 1996
PDF: 10 pages
Proc. SPIE 2760, Applications and Science of Artificial Neural Networks II, (22 March 1996); doi: 10.1117/12.235929
Show Author Affiliations
Federico Hahn, Instituto Tecnologico de la Laguna (Mexico)


Published in SPIE Proceedings Vol. 2760:
Applications and Science of Artificial Neural Networks II
Steven K. Rogers; Dennis W. Ruck, Editor(s)

© SPIE. Terms of Use
Back to Top