Share Email Print
cover

Proceedings Paper

Optical implementation of a parallel out-of-band controller for large broadband ATM switch applications
Author(s): Thomas J. Cloonan; Gaylord W. Richards; Anthony L. Lentine
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Asynchronous transfer mode (ATM) is rapidly becoming the transport mechanism of choice for the information superhighway, because it promises the bandwidth and flexibility needed for many voice, video and data service offerings. Some industry experts project that the required sizes for ATM switching equipment in the public-switched environment will reach the Tbps range by the beginning of the next decade. This paper analyzes the problems associated with controlling the flow of packets within a broadband ATM switch of this size. The analysis is based on the requirements of the growable packet switch architecture. The paper proposes a novel solution to the problem of hunting paths within an ATM packet switch network. The resulting control scheme is unconventional in two ways. First, it uses an out-of-band control algorithm instead of the more common self-routing approach. In particular, we explore the benefits of using a parallel processor as an out-of-band controller for a growable packet switch distribution network. The processor permits additional levels of parallelism to be added to the out-of-band control function so that path hunts can be performed for all N of the input ports within a single cell interval. The proposed approach is also unconventional because it uses free-space digital optics to guide signals between successive stages of the controller. The paper describes the underlying motivations for implementing an optical out-of-band controller for an ATM switch, and it also describes the logic within a controller node that has been fabricated using a hybrid Si CMOS/GaAs SEED technology. The node uses optical detectors (in GaAs), amplifiers and digital control logic (in Si), and optical modulators (in GaAs). Free-space optical connections between successive device arrays can be provided using either bulk optical elements or micro-optics, but the optical interconnects must provide massive fanout capability. An architectural analysis studying the feasibility of applying free-space optics in this proposed ATM switch controller also is presented.

Paper Details

Date Published: 20 March 1996
PDF: 12 pages
Proc. SPIE 2692, Optical Interconnects in Broadband Switching Architectures, (20 March 1996); doi: 10.1117/12.235861
Show Author Affiliations
Thomas J. Cloonan, AT&T Bell Labs. (United States)
Gaylord W. Richards, AT&T Bell Labs. (United States)
Anthony L. Lentine, AT&T Bell Labs. (United States)


Published in SPIE Proceedings Vol. 2692:
Optical Interconnects in Broadband Switching Architectures
Thomas J. Cloonan, Editor(s)

© SPIE. Terms of Use
Back to Top