Share Email Print

Proceedings Paper

Improving the performance of genetic algorithms for terrain categorization of multispectral images
Author(s): David E. Larch
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A method that uses a genetic algorithm (GA) to optimize rules for categorizing terrain as depicted in multispectral data has been developed by us. A variety of multispectral data have been used in the work. Linear techniques have not separated terrain categories with sufficient accuracy so that genetic algorithms have been applied to the problem. Genetic algorithms, in general, are a nonlinear optimization technique based on the biological ideas of natural selection and survival of the fittest. For the work presented here, the genetic algorithm optimizes rules for the categorization of terrain. The genetic algorithm produced promising results for terrain categorization; however, work continues with efforts to improve classification accuracy. As part of this effort, new rule types have been added to the genetic algorithm's repertoire. These new rule types include the clustering of data, the ratio of bands, the linear combination of bands, and the second order combination of two and three bands. Improved performance of the rules is demonstrated.

Paper Details

Date Published: 25 March 1996
PDF: 7 pages
Proc. SPIE 2662, Nonlinear Image Processing VII, (25 March 1996); doi: 10.1117/12.235835
Show Author Affiliations
David E. Larch, MRJ, Inc. (United States)

Published in SPIE Proceedings Vol. 2662:
Nonlinear Image Processing VII
Edward R. Dougherty; Jaakko T. Astola; Harold G. Longbotham, Editor(s)

© SPIE. Terms of Use
Back to Top